A Model for the Behavior of Fluid Droplets Based on Mean Curvature Flow
نویسنده
چکیده
The authors of [W. D. Ristenpart et al., Nature, 461 (2009), pp. 377–380] have observed the following remarkable phenomenon during their experiments. If two oppositely charged droplets of fluid are close enough, at first they attract each other and eventually touch. Surprisingly after that the droplets are repelled from each other, if the initial strength of the charges is high enough. Otherwise they coalesce and form a big drop, as one might expect. We present a theoretical model for these observations using mean curvature flow. The local asymptotic shape of the touching fluid droplets is that of a double cone, where the angle corresponds to the strength of the initial charges. Our model yields a critical angle for the behavior of the touching droplets, and numerical estimates of this angle agree with the experiments. This shows, contrary to general belief (see [W. D. Ristenpart et al., Nature, 461 (2009), pp. 377–380] and [W. D. Ristenpart et al., Phys. Rev. Lett., 103 (2009), 164502]), that decreasing surface energy can explain the phenomenon. To determine the critical angle within our model, we construct appropriate barriers for the mean curvature flow. In [Comm. Partial Differential Equations, 20 (1995), pp. 1937–1958] Angenent, Chopp, and Ilmanen manage to show the existence of one-sheeted and two-sheeted self-expanding solutions with a sufficiently steep double cone as an initial condition. Furthermore they provide arguments for nonuniqueness even among the one-sheeted solutions. We present a proof for this, yielding a slightly stronger result. Using the one-sheeted self-expanders as barriers, we can determine the critical angle for our model.
منابع مشابه
Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملNonlinear Vibration of Smart Micro-Tube Conveying Fluid Under Electro-Thermal Fields
In this study, electro-thermo-mechanical nonlinear vibration and instability of embedded piezoelectric micro-tube is carried out based on nonlocal theory and nonlinear Donnell's shell model. The smart micro-tube made of Poly-vinylidene fluoride (PVDF) is conveying an isentropic, incompressible fluid. The detailed parametric study is conducted, focusing on the remarkable effects of mean flow vel...
متن کاملEffect of Surface Roughness on Vortex Length and Efficiency of Gas-oil Cyclones through CFD Modelling
Separation of suspended droplets in a fluid flow has been a great concern for scientists and technologists. In the current study, the effect of the surface roughness on flow field and the performance of a gas-oil cyclone is studied numerically. The droplets and the turbulent airflow inside the cyclone are considered to be the discrete and continuous phases respectively. The Reynolds stress mode...
متن کاملVibrational characteristics of a spinning thermally affected cylindrical shell conveying viscous fluid flow carrying spring-mass systems
In this article, the vibrational behavior of a spinning cylindrical thick shell carrying spring- mass systems and conveying viscos fluid flow under various temperature distributions is investigated. This structure rotates about axial direction and the formulations include the coriolis and centrifugal effects. In addition, this system is conveying viscous fluid, and the related force is calculat...
متن کاملSecond Law Based Analysis of Fluid Flow in the Regenerator of Pulse Tube Refrigerators
As a necessary component, regenerator plays an important role in the refrigeration performance of the pulse tube refrigerator. The objective of this research is to investigate the flow characteristics in a porous regenerator of the pulse tube refrigerators, subjected to oscillating flow. The hydrodynamic and thermal behavior of the regenerator is investigated by considering porous media approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2012